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The former papers of this series have been mainly occupied with cases 
where no genotype was completely eliminated, though some were fitter 
than others. The main earlier work dealing with the case where certain 
genotypes were wholly prevented from breeding, is that of ZIRKLE (1926). 
He considers selection in random mating populations where the characters 
are determined by a number of unlinked genes, all present in equal pro- 
portions. This case has assumed a special importance in experimental work 
where a cross is made between pure lines. Thus LITTLE and his colleagues 
have investigated the susceptibility of mice to tumor transplantation. A 
tumor can be transplanted into any individual carrying each of k dominant 
genes, where k varies between 2 and 12 or more (CLOUDMAN 1932). There 
are only two phenotypes, susceptible and immune. If either of these is 
bred from in any generation to the exclusion of the other it is clear that in 
any generation the ratio of dominant to recessive genes will be the same in 
all the k loci, apart from differences due to the smallness of the sample. 
This is so however the population is derived, whether it is an Fz, a back- 
cross or some later derivative. In consequence, as ZIRKLE pointed out, we 
can fix our attention on one of the k gene pairs, and any statement made 
about it is true for each other pair. 

HALDANE (1926) has already dealt with the case where all the genes 
concerned are not present in equal numbers. This case, though important 
for evolution and eugenics, is relatively intractable. ZIRKLE’S analysis, 
though accurate and valuable, can be enormously simplified. Further he 
confines himself to random mating populations, and a geneticist desiring 
to fix a character would probably employ inbreeding. Hence certain theo- 
rems on inbreeding combined with selection will be proved. Again there is a 
close analogy between the populations considered and autopolyploid popu- 
lations. 

In each case we shall consider a population derived from an F1 ob- 
tained by mating two pure lines, though many results can be extended to 
other populations. These latter are marked by an asterisk. The results are 

* Part of the cost of the mathematical composition in t h i s  article is paid by the GALTON AND 
MENDEL MEMORIAL FUND. 
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given for very large populations, but they may be regarded as giving 
probabilities for smaller populations, provided that these are not so small 
as to entail appreciable inbreeding where mating is supposed to be a t  ran- 
dom. We shall suppose that all genes are autosomal and unlinked. By the 
expression “multiple dominant” is meant a zygote containing at  least one 
of each of the k dominant genes, by “multiple recessive” a zygote con- 
taining none of them. 

SELECTION OF MULTIPLE DOMINANTS; RANDOM MATING 

This case is very simple for the following reason. A zygote is eliminated 
if it is recessive for any gene. The probability of this being the case is the 
same whatever other genes are present. Each of the k genes A ,  B, C,- 
must be present in a multiple dominant. Since mating is a t  random the 
genotypes in F, are in the ratios 

u,2AA :2u,Aa: laa 
and so for the other genes. The effect of eliminating all recessives for any 
gene will be to remove all aa zygotes, and some of the A A  and Aa.  These 
latter are eliminated in equal proportions, as A is not linked with any of 
the other genes concerned. The survivors are in the ratio 

u,A A : 2A a, 

(un+I)A : la  
giving gametes in the ratio 

whence 

just as when one gene only is concerned, and 
Un+l=  Un + 1 

Un = uo +n 
so that the”proportion of multiple dominants in F, is 

D,= 1- I”. (1.1*) t (uo+n+1)2 

But in Fz, u2= 1, whence u,=n-1, and 

D, = (1 - n-2)k. (1.2) 
This is equivalent to ZIRKLE’S formula of p. 562 but simpler. For ex- 

ampleif k=8,  D2=(1-$)80r .1001, Ds=(1-1/25)80r .7218. 

RELATION BETWEEN GAMETES OF SUCCESSIVE GENERATIONS OF A RANDOM 

MATING POPULATION, WITHOUT SELECTION 

Before solving the next two problems an expression must be found for 
this relationship. Let F, be formed from gametes such that the proportion 
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of each type of gamete carrying r dominants is g,. There are kCr types of 
gamete carrying r dominants, each present in equal numbers. Hence 

k 

r=O 

Let Z(i, j) be the proportion in F, of each type of zygote homozygous 
for i dominant and j recessive genes. Clearly k 5 i + j  5 0 ,  and there are 

k! 
i !j !(k -i - j) ! Or k c i  k - i c j  different types of such zygote, so that 

k c i  Zk-iCj Z(i, j) = 1. 
k k-i 

i = O  j=O 

It also follows that such a zygote can be made up in k-i-jCr ways from 
gametes carrying (i+r) and (k-j-r) dominants, so that 

(2.1*) 

Sucha zygote produces gametescontaining from i to k- j(inc1usive)domi- 

nant genes in proportions which are terms in the expansion of 

That is to say i t  contributes to one type of gamete carrying m dominants 
a proportion 2’+jPk k-i-jcm-i of its gametes. so if gml be the proportion of 
each type of gamete carrying m dominants produced by F,, we have, since 
there are k c i  k - i c j  types of zygote in the proportion Z(i, j) and kCm types 
of gamete in the proportion g,l, 

I m k-m 

(2.2*) 

This expression can readily be altered if any classes of zygote are re- 
moved by selection. 

ELIMINATION OF MULTIPLE DOMINANTS, RANDOM MATING 

The classes of zygotes eliminated are recessive for none of the genes, 
that is to say in the expression for Z(i, j),  j = O .  Hence the proportion of 
dominants in F, is 
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D,= CkCi z(i, 01 (3.1*) 
i = O  

and the gametes of the survivors, which form F,+l, are given by the ex- 
pression 

m k-m 

2-k C2i m C i  C 2j  k - m c i  Z(i, j) 

1 -Dn 
(3.2*) 

j=1 - .  i=O 
g" = 

Further in the gametes of F,, every g, = 2-k, and in all later generations 

For purposes of calculation it is desirable to write out the necessary 
formulae for each Z(i, j) from equation (2.1). These number +(k+l) 
(k+2). They can then be substituted in equations (3.1) and (3.2). For 
example if k = 6 we obtain 28 such expressions as 

gk=o, 

Z(2, 0) =2gzg6+8g3g5+6g42. 

Whence 

Dn = 2 g ~  -g62+6g6(2g1 + 1OgZ+2Og3+2Og4+5gS) 
+30g4(gz+4g3+3g4) +20g32 

1 

8(1 -Dn) 

1 
16(1 -Dn) 
+g1(56gl+20Ogz+ 160g3+65g,+ log5) + 1Og2( 14gz+ 17g3+4g4) +3Og3'] 

1 .  

go' = [go(8go +48gl +6Ogz +4Og3 + 15g4 + 3gs) 

+ 15gi(4gi+8g2+4g3+ga) + 15gz(3gz+2gJ I 
gll = [go( 16g1+4Ogz +40g3 + 20g4+5g5) 

gz' = -~ [g0(2gZ+4g3+3g4+gB) +g1(2gl +20gZ+28g3 + 17g4+4g5) 
4 0  - DJ 

+gz(29gz+62g3+28g4+4gs) +12g3(2g3+gd 1 
1 

16(1 -Dn) 
g3' = [ go(4g3 + 6g4$3&) +3g1(4gz + 16gs + 17g4+6g5) 

+6gz( 7gz +3 Ig3 + 24g4 +6g5) +2g3( 7 Ig3 + 78g4 + 12g5) +24gd2] 

igo(g4-k g6) + gl(4g3 4- I3g4 f 8gs) +gz(3g2 f34g3 +56g4+ 24g5) 
1 

8(1 -Dn) 

1 
16(1 -Dn) 

gh = 

+8gs(6g3+13g4+4gs) +8g4(5g4+2gs) I 
82 = [g@6 +5gl(g4 + 2g5) + lOgZ(g3 +4g4 +4g5) 

+ 10g3(3g3 + 12g4+8g5) +8Og4(g4+g5) + 1 6g52 I . 
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729 
4096 

Hence Dz =- = .1780, and, among the gametes forming Fa 

63 62 60 56 48 32 
go==, g --t g --, g --, g --, g --> g6=0 '-3367 '-3367 3-3367 - 3367 5-3367 

1,416,512 
11,336,689 

whence Dt = = .1249, and D4 and subsequent terms can easily 

be calculated. 
ZIRKLE has given the requisite expressions for k = 2,3,4,  and carried out 

the calculations. In  the case of k = 2  the composition of each generation 
may be represented by a single parameter. BENNETT (1924) has solved the 
equation 

I 

which arises if we represent the gametes forming Fn by 

(where S, = 5/2). 
Here 

and 
1 1 5 13 

2Sn 3% 36S2 240s: 
n+C=Sn+log (Sn-I)+------p 

(3 
- . . . .  947 - 193 - 

1800Sn5 7560Sn6 

where C = .64018855-. An alternative solution is as follows:- 

Let the gametes forming Fn be:- 

Then 

or 

X n - 1  xn-1 1 
Ab, __ aB, -ab. 

2xn 2xn Xn 

(xn- 1)' Xn 1 
Dn = , xn+l=-+l-- 

2x3,' 2 2xn 

4) 

-k(xn - I)' 
This is a particular case of the equation Axn= solved by 

Xn 
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HALDANE (1932) in another connection. It was shown that for x >1, as in 
this case, a very approximate solution is 

n = C +  1 + log xn +-loge(+). 1-k 
Xn - k(xn-l) log (1-k) k 

Here k = 4, so 

- 
2 log(l-d/2D,) 1 

Dn log 2 2 
= C‘ +&- + - - loge Dn . ( 3 . 9 )  

It was shown that this equation has an error of about 1 percent in the 
neighbourhood of xn = 2, and is much more accurate for smaller values. It 
may be used to solve such problems as the following: “How many genera- 
tions of selection are needed to reduce the proportion of double dominants 
to 1 percent?” In Fa, the first generation for which the equation (3.5) 
holds, we substitute n=3, Dn=2/9, and find C1=.833. Substituting this 
value, and D,=.Ol, we find n512.005. Hence the value is very nearly 
reached in Flt. 

ELIMINATION OF A MULTIPLE RECESSIVE, RANDOM MATING 

Under any type of mating, selection of a multiple recessive is of course 
complete in one generation. To derive the equations for the case where the 
single genotype recessive for all k genes is eliminated we have only to note 
that the proportion of multiple recessives Z(0, k) of equation (2.2) is 
Rn =go2 and the relation between gametes of successive generations is 

m k-m 
(1-Rn)g,’=2-k~2i ,Ci c 2 j  k - m c j  Z(i, j), when m f o ,  and 

(4.1*) i s 0  j = O  

k-1 

(1-Rn)g0’=2-~E2j k c j  z(0, j ) .  
j-0 

ZIRKLE has tabulated values of R, for k =2, 3, and 4; and higher values 
of k are not known to occur. If k = 2, and p n  =g2, qn =gl, rn =go we have, as 
he points out 

pn ++(qn2 -pnrn) 
pn+l= 

1 -rn2 

1 -rn2 
qn -$(qn2 -pnrn) 

qn+l= 

rn - rn2 + +(qn2 - Prim> 
rn+i = 

1 -rn2 
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Putting qn+rn =z,, we find 
2 Zn-rn 

Zn+l=- 
1 -in2 

$(rn+zn2) -rn2 
1 -rn2 

rn+i = 4.2*) 

R,+l = rn2. 

Whence calculation is easy, since z2 =+, r2 =a. For large values of n, 
r, approximates to zn2, and Az, to -zn4, whence n = constant ++ r3, ap- 
proximately, and R, approximates to (3n +c) -~’~ .  

SELECTION OF DOMINANTS I N  A N  AUTOTETRAPLOID, RANDOM MATING 

This case is included here owing to its close similarity to the last. It is 
assumed that double reduction (HALDANE 1930) does not occur. Let the 
gametes forming F, be in the ratiospnAA :2qnAa:r,aa, wherepn+2q,,+r, 
= 1. The recessives, which are eliminated, occur in F, in the proportion 
R, = rn2, and:- 

pn +$(qn2 -pnrn) 
p n + l =  

1 -rn2 

Putting zn =qn+rn, we have 

+(rn+2zn2) -rn2 
1 -rn2 

rn+l= (5.1*> 

R, = rn2. 

As above, when n is large, R, approximates to ( 3 n + ~ ) - ~ / ~ .  Starting with 
an F1 between homozygotes, we find the following percentage values of 
R, in successive generations:--O, 2.7, 4.0, 3.671, 6.432, 2.623, 2.003, 
1.644. . . . It will be seen that the values oscillate at  first, as they do when 
there is no selection, reaching a maximum in Fs. 

SELECTION OF MULTIPLE DOMINANTS : SELF-FERTILIZATION 

A self-fertilized population consists of lines of one individual per genera- 
tion. Selection does not alter the character of these lines, but only their 
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relative proportions. If there is no selection FnV1 consists of zygotes in the 
ratios (2,-l-2) A A  :4 A~:(2”-~-2)aa,  and similarly for the other genes. 
Now (if we confine our attention to A and a)  all the aa zygotes are elimi- 
nated. But as all their descendants in later generations are also aa, the 
composition of F, is unaltered if we postpone our selection till F,-*. The 
parents of F,, after selection, are thus in the ratio 

(2-1 - 2)AA : 4A a, 

2 ” 4 +  1 
2”--‘+2 

and F, consists of (2n-1 - 1)AA : 2Aa: laa or A A  and Aa.  Hence 

the proportion of multiple dominants in F ,  is 

Comparing this with (1 -n-2)k of equation (1.2) we see that from FB to 
Fs inclusive the multiple dominants are fewer than in the case of random 
mating, but from F7 onwards more numerous. This is because the rapid 
elimination of heterozygotes causes a large number of recessives to appear 
in the first few generations. The final population consists of homozygous 
multiple dominants. 

ELIMINATION OF MULTIPLE DOMINANTS ; SELF-FERTILIZATION 

This case is extremely simple. Elimination is complete in one genera- 
tion. For clearly no multiple dominant can appear save in the progeny of 
a zygote carrying all the requisite genes, that is, itself a multiple dominant. 
But the end result is quite different from that in the case of random mat- 
ing. I n  the latter case all dominant genes are ultimately eliminated in a 
large population, and most in a small one. With self-fertilization no selec- 
tive elimination occurs after Fz, and the average number of genes for 

2k(4k-l- 3k-1 1 which a homozygote in the final population is dominant is -- 
4k - 3k 7 

or f(1-&). The multiple dominant phenotype will thus reap- 

pear if crossbreeding commences i n  this heterogeneous population. 

ELIMINATION OF MULTIPLE RECESSIVES ; SELF-FERTILIZATION 

This case is of some practical importance in allopolyploid plants such as 
wheat. As in the last case but one we can imagine selection postponed 
either until Fn-l or F, without altering the final result. The complete 
Pn-l would have consisted of 
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(*-21-n)AA, 22-"Aa, ($-21-n)aa, 

and so on for the other k - 1 genes, the total multiple recessives removed 
up to F,-l being therefore (4 - 21-nk). The additional multiple recessives 
removed from F, would therefore be (4 - 2-n)k - (4 - 21-n)k taken from a 
population of 1 - (3 - 2l-.)k of the original total. Thus the proportion of 
recessives appearing in F, is 

For large values of n this approximates to 21-n-kk. Table 1 gives the value 
of 100 R,, the percentage of multiple recessives, for Fz to Flo for k = 2 and 
3, the practically important cases. 

TABLE 1 

Percentages of multiple recessives in F,, recessives eliminated by sdjing. 

n 2 3 4 5 0 1 

k=2,100Rn 6.25 8 .3  5.90 3.502 1.909 0.9968 
k=3, 100Rn 1.5625 3.770 3.273 2.102 1.187 0.6374 

n 8 9 10 

k=2,100Rn 0.5095 0.2435 0.1295 
k=3,100Rn 0.3112 0.1649 0.08308 

As in the last case, selection does not lead to a homogeneous population. 
It ceases in any line as soon as any single recessive gene is eliminated. The 
average number of dominant genes in a homozygote of the final popula- 

k , instead of k in the case of random mating. But of course 2-21-k tion is 

the elimination of the multiple recessives is greatly speeded up by selfing. 

SELECTION OF DOMINANTS I N  A N  AUTOTETRAPLOID : SELF-FERTILIZATION 

HALDANE (1930) has shown that in a self-fertilized autotetraploid F,, 
where F, is a hybrid between two homozygotes, the proportion of reces- 
sives is 
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Hence, as above, the proportion appearing in F, when recessives are elimi- 
nated in each generation is 

rn - rn-i 
1 - r,-l 

R, = 

Hence 
5(7.5n-3-1) 

Rn = 
6(6n-1+7.5n-3-1) (7.1) 

7.5,-2 1 
6" 6 

and when n is very large it approximates to ___ or - of the total 

proportion of heterozygotes in an unselected Fn-l. 

SELECTION OF A SINGLE DOMINANT, BROTHER-SISTER MATING 

Before we can proceed to consider the selection of a multiple dominant, 
this problem, which so far as I know has never been fully treated, must be 
solved. Since aa zygotes are not allowed to breed, there are only three 
types of mating. Let these occur among the parents of Fn in the propor- 
tions x,AA XAA, ynAA XAa (and reciprocally) and znAaXAa, where 
Xn+yn+zn = 1. Then the proportion of dominants in F, is d, = 1 -azn. 
Only 3/4 of the offspring of the AaXAa matings are allowed to breed. 
Hence the contribution of these matings to the next generation is 

4 ,  9 
g A A  X A A  +-AA XAa+-AaXAa 

4 

9 

or 

1 1 1 
-AA XAA, -AA XAa,  - A a X A a .  
12 3 3 

Hence :- 
1 1 
4 12 

Xn +-yn +-zn 

Putting zn = 4 - 4dn we find 

(8.1*) 
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and 

Hence 

and 

(8.2*) 

pn is therefore the sum of the nth terms of three geometric series whose 

common ratios are the roots of 12X3 - 22X2 + 11X - 1 = 0, or 1 and- . 
1 

5+1/13 

Since z? = 1, we find 
1 1 

1 -~ 2/B 1 +- di3 
-- + (8 .3)  

pn+2 = 2 + ( 5  -413)" (5+2/13)" 

Since z? = 1 

(8 .3)  

If rn and h, are the proportions of recessives and heterozygotes re- 
spectively in F,, then r, = 1 -dn, so from equation (8.2) 

1 
1 -rn 

12(1 -r,,+l) 

1 + 10rn+i -- 
rn+2 = (8.4") 

Pn-Pn+l 
P n  

from which r, is easily calculated, since r2=t, r3=+, Since r n =  9 

then from equation (8.3), 

Hence the values of rn ultimately approximate to ( 1 -- ' )(5 - 2 / 1 3 ) 3 - n ,  
22/13 

a geometric series whose common ratio is .717, thus diminishing more 
rapidly than in the case of random mating. 
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hn = 4 (y n + Zn) 

= $(13dn- 12dn+ldn - 1) 
8 = rn+l( 1 - rn) - $rn 

(8.6*) 

h, 
whence it is readily calculated. When n is large the value of - approxi- 

rn 

j or 5.07. Hence h, approximates to a geometric series mates to 

whose common ratio is .717, and it diminishes more rapidly than in the 
case of brother-sister mating without selection, where the common ratio 

is - j or .809. Table 2 gives the values of rn and h, for the first 12 

generations, calculated from equations (8.4) and (8.6). They are compared 
with the corresponding values in the case of random mating. It will be seen 
that after F3 the proportion of homozygous dominants is increased by in- 
breeding, that of heterozygotes diminished. However the proportion of 
recessives between Fa and Fll inclusive is higher when inbreeding is prac- 
ticed than when mating is a t  random. It may be remarked that there is 
no advantage in beginning brother-sister mating before Fa, since the Fz 
from two pure lines are all as closely related to one another genetically 
as if they were sibs. 

In practice the elimination of recessive genes could of course be increased 
still further either by a refusal to breed from individuals with recessive 
sibs, or better, by test matings with recessives. But the consideration of 
this somewhat artificial case is necessary if we are to solve the next prob- 
lem. 

TABLE 2 

S + 2 2 / B  
3 

1 
G l  

" D O H  MATINQ BROTER-SIE'IER MATINQ 
n RECESSIVES ETEROZYQOTELI RECESFAVES (In) KETEROZYWTEB ( h d  

1 0 1.00 0 1.00 
2 .25 .so .25 .50 

3 .1 .4 .1  .4 

4 ,0625 ,375 ,072916 ,35416 
5 ,0400 ,3200 ,054307 .27341 

6 .036 .27 ,040924 .20726 
7 ,020408 ,2449 .030569 .15497 
8 ,015625 ,21875 .022609 .11464 
9 ,012346 .19753 .016555 ,084109 

10 .OlOO .la00 ,012097 ,061335 
11 .008265 ,165289 ,0087854 ,045 1 15 

. .  

12 .00694 ,1527 ,0063392 ,032127 
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SELECTION OF MULTIPLE DOMINANTS, BROTHER-SISTER MATING 

The situation is very similar to that in the case of random mating. All 
the zygotes recessive for any one of the k genes are eliminated a t  once in 
each generation. The process of the last paragraph thus takes place for 
each gene separately. And these processes are independent. So to find the 
proportion of multiple dominants in F ,  we have only to put 

Dn=(l-rn)k (9.1*) 

where r, is given by equation (8.5) or table 2. Thus in F7 of an inbred popu- 
lation a fraction .96943 carry any given one of the dominant genes, and 
.96943k carry all of them. A fraction 1-h,-r, or 31446 of F7 is homo- 
zygous for any one dominant gene, a fraction (1 -hn-rn)k or .S1446k for 
all of them. Table 3 gives the results fork = 10, with random mating results 
for comparison. It will be seen that up to Flz inbreeding slightly slows 
down the actual appearance of dominants, but greatly increases their 
genetic purity. Thus in Flo 53 percent of the dominants are homozygous 
in the case of inbreeding, and only 13 percent in that of random mating. 

Again there is no need to practice brother-sister mating before FB, and 
it would be practicable to begin it in FB even if as many as 10 genes were 
concerned. The process of selection could of course be speeded up if fami- 
lies containing any recessives were rejected, which would be practicable 
after about Fs. 

TABLE 3 
Composition of F ,  when only multiple dominants for 10 genes are bred from. 

U N D O M  MATINQ BEOTFIER-SISTER MATINQ 

n TOTAL 1O-ple EOMOZYQOUB TOTAL IO-ple EOMOZYQOUS 
DOMINANTS IO-ple DOMINANTS IO-ple 

DOMINANTS DOMINAWIS 

1 1 .o 0 1 .o 0 
2 ,0563 9.5x10-' . 0563 9 . 5 X  lo-' 
3 ,3080 .00030 .3080 ,00030 
4 .5244 ,00317 ,4690 ,00381 
5 ,6648 ,01152 . ,5722 ,01886 
6 ,7720 ,02578 ,6585 ,05769 
7 .8137 .04582 ,7331 .1284 
8 .8543 ,06921 .7956 ,2285 
9 .8832 ,09483 ,8453 .3460 

10 ,9043 ,1215 ,8854 .4665 
11 .9203 .1486 .9155 .5746 
12 .9327 .1755 .9385 ,6754 

ELIMINATION OF MULTIPLE DOMINANTS : BROTHER-SISTER MATING 

The population in Fz and later consists of pairs of mated zygotes, apart 
from the multiple dominants, which are eliminated. Thus mating pairs 
fall into four classes. 
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1. Pairs giving only multiple dominants. 
2. Pairs giving multiple dominants and other genotypes among their 

3. Pairs giving multiple dominants and other genotypes both among 

4. Pairs never giving multiple dominants. 

Clearly it is only class 3 which contribute multiple dominants to re- 
mote generations. 

A consideration of the case when k = 2 will illustrate the principles in- 
volved. Nine-sixteenths of Fz are double dominants, so Dz =9/16. The five 
genotypes which are the parents of F3 occur in the proportions: 

immediate off spring, but no multiple dominants later. 

their immediate progeny and in later generations. 

1 1 2 2 1 
7 7 7 7 7 

-AAbb, -uuBB, -Aabb, -~aBb ,  - ~ ~ b b .  

The matings occur with the following frequencies:- 
Class 1. 2/49 AAbbXaaBB 
Class 2. 4/49 AAbbXaaBb, 4/49 aaBBXAabb 
Class 3. 8/49 AabbXaaBb 
Class 4. 31/49 other matings, for example, 1/49 AAbbXAAbb, 4/49 

Aabb Xaabb. 

That is to say 2/49 give all double dominants, 8/49 give 50 percent, and 
8/49 give 25 percent. So D3 = 8/49, and 41/49 of Fa is available for mating. 
Only class 3 matings give further double dominants. A mating of class 3 
gives 25 percent double dominants, and matings which can be symbolized 

3 1  
4 9  

by 
-.- (Aabb +aaBb +aabb)2. 

If there is a proportion pn of such matings among the parents of Fn, 
then Dn =tpn,  
and 

If we put 

we find 

so that 
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Since 6/41 of the matings of the parents of F4 are derived from families 
of the type (Aabb+aaBb+aabb), 

2 6  4 x5 122 
~4 123 

p4 =jy'G =z 1 and -=---. 

Hence a = 609 X6-5 and 

~ n + i  1+609X6n-4 
~- - 

x, 6+609X6n-4 

so 
Xn+1 5 D, = 1 -__ = 
x, 6+609X6n-5 

(10.1) 

from F4 onwards. Hence the successive values of D,, the proportion of 

9 8  
16 49 

double dominants in successive generations from Fz onwards are - 1 - 1  

1 1 1  
- 1 - 1  - and so on. The corresponding values for a random mating 
123 732 3186 

9 8 200 192,200 
16 49 1681' 2,193,361) 

population, derived from equation (3.3), are - t - 1 - 

.0658, et cetera which diminish far more slowly. 
The final population can readily be calculated. Such a mating as Aabb  

Xaabb ultimately gives a population of 1/4 AAbb, 3/4 aabb and so on. 
The mating AabbXaaBb gives 
ultimately leading to 

1 
7 

-AAbb, 

So the final population is 

1 1  

1/6 similar matings and 7/12 matings 

1 5 
7 7 

-uuBB, -aabb 

or 1/10 (AAbb+aaBB+Saabb).  The ultimate population from all the Fz 
mating types is therefore in the ratios 54 A A b b  : 54 a a B B  : 95 aabb. 

In  general the proportion of class 4 matings, which never give any mul- 
tiple dominants, among the survivors of F, can easily be shown to be 

16k - 15k 
a quantity which rises from 63.3 percent when k = 2 to 86.6 per- 

(4k - 3k) 
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c < 

cent when k = 10. In  all cases a majority of the matings of Fz never give 
multiple dominants, and thus if a few lines are started, most of them will 
give the desired phenotype only, though they will give different geno- 
types. There is thus no practical value in working out expressions for D, 
for different values of k. 

AABb XAabb" 4 AaBb XAAbb" 
' AABBXAABB 

AABBXAABb" 
AABBXAAbb" h AABb XaaBb" 
A A B b X A A B b  i AAbb XaaBB 
AABb XAAbb" j AAbb XAabb* 
AAbb XAAbb" k AAbb XaaBb" 
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(1 -R') j' = 

(1-R')k'= 

(1 - R')l' c 

(1 -Rf)mf = 

(1-R')p'= 

(1 - R')q'= 

Hence 

J. B. S. HALDANE 

1 1  1 1 1 1  
-jn +-Iu + - m n t p n  2 30 14 3 -fu + -n+ 8 8  

1 1  
-1, + -mu 30 28 

1 1 1 1 1  1 1 1  1 
-dn+*n+-fn+-n+Thn+ in + --kn+-1. +-mu+ z n  12 4 16 16 4 15 14 

1 1 1  1 2 3  1 4 +-n+--hn+ 16 8 4 
1 1 1  1 1 1 5 1 1  zfn + -n+--hn+ 16 16 4 4 3 0 5 6 3  6 

1 1  1 
-1, + -mn+ 30 14 

P" --kn+--ln + -mu+ 2 15 14 

-j, + --k,+--l, + -mn+--Pn+--qn 

Pn 
(10.2*) 

1 1 4649 
R ~ = E ,  R a = z ,  &=-- - 4.48 percent 

103680 

whereas with random mating (from equation 4.2) 

1 1 361 
16 25 11664 

R2 =- 9 R ~ = - J  Rq=-=3.10percent. 

Thus at  first somewhat more double recessives appear as the result of 
inbreeding. However it is clear that in the case of inbreeding Rn ultimately 
approximates to a geometrical series, and consequently diminishes far more 
rapidly than in the case of random mating. For practical purposes the 

31 
225- 13" per- 

value of Cn is even more important than that of R,.cz =- - 

14319 
45360 

cent, while cB=-=31.6 percent. That is to say 31.6 percent of all FI 

mated pairs will give no double recessives. Hence even two generations of 
brother-sister mating will have eliminated the possibility of producing 
double recessives from many lines. 

For values of k exceeding 2 the equations become quite excessively com- 
plex. However cz, the probability that a given breeding pair in Fz (after 
eliminating the multiple recessives) will never, in any later generation, 
yield multiple recessives, is 

16k- lSk 
c2 = 

(4k- 1)2 
(10.3) 

The values of cz as percentages from k = l  to 5 inclusive are 11.1, 13.7, 
18.17, 22.93, 27.63. Thus if k = 5  rather over 1/4 of all the matings of 
surviving Fz would give no recessives. cz increases rather slowly, only reach- 
ing 47.55 percent when k = 10, and 72.49 percent when k =20. 
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Just as in the case where multiple dominants are eliminated, the final 
population is not genetically homogeneous in the case of brother-sister 
mating. If mating were re-started between different lines, multiple re- 
cessives might appear in the second, though not in the first, generation. 

The rather delicate problem of brother-sister mating in an autopolyploid 
is reserved for a future publication. 

SUMMARY 

Expressions are found for the effects of selection on populations, both 
random mating, selfed and inbred, where the character selected depends 
upon several genes, and (as in the case of crosses between pure lines) each 
gene pair is present in the same ratio. 
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